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Abstract 

The short-term (0-3 hr) prediction of solar insolation for renewable energy production is a problem 

well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution 

of instrumentation hosted on the geostationary platform allows these satellites to describe the 

current cloud spatial distribution and optical properties. These properties relate directly to the 

transient properties of the downwelling solar irradiance at the surface, which come in the form of 

‘ramps’ that pose a central challenge to energy load balancing in a spatially distributed network of 

solar farms.  The short-term evolution of the cloud field may be approximated to first order simply 

as translational, but care must be taken in how the advection is handled and where the impacts are 

assigned. In this research, we describe how geostationary satellite observations are used with 

operational cloud masking and retrieval algorithms, wind field data from numerical weather 

prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar 

insolation for applications in solar power generation. The scheme utilizes retrieved cloud 

properties to group pixels into contiguous cloud objects whose future positions are predicted using 

four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the 

cloud height properties of each cloud group. The shadows associated with these clouds are adjusted 

for sensor viewing parallax displacement and combined with solar geometry and terrain height to 

determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high 

solar zenith angles, the combined displacements from these geometric considerations are non-

negligible.  The cloud information is used to initialize a radiative transfer model that computes the 

direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions.  

Here, we describe the formulation of the algorithm and validate its performance against Surface 

Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations.  Typical errors range 

from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational 

demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) 

under all conditions by ~10 W/m2. 

Keywords:  Geostationary Satellite, Cloud Properties, Parallax, Shadows, Advection, Solar Irradiance 
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1. Introduction

Ephemeral cloud cover (e.g., fair-weather cumulus fields) presents a key challenge to the 

generation of power using photovoltaic (PV) and concentrated solar power (CSP) systems 

distributed worldwide. Cloud shadows reduce the direct beam solar irradiance significantly and 

modulate the diffuse-sky radiation distribution as well, impacting the overall global horizontal 

irradiance (GHI) available for renewable energy production.  The rapid, high-amplitude fluctuations 

to the available solar energy at the surface that result from shadow passage are referred to in the 

power and energy industry as ‘ramps.’ These ramps have a marked impact on power generation 

efficiency at multiple space and time scales (Perez et al., 2016).   

Fig. 1.  Example of a solar irradiance ramping event as measured from the surface and satellite for a 

case at Christman Field, Ft. Collins, CO on 26 June 2017 at 2000 UTC (top row) and 2100 UTC (bottom 

row).  The left, center, and right columns show (respectively) i)  time-matched global horizontal 

irradiance (GHI) from a pyranometer located at Christman Field, Ft. Collins, CO (vertical dashed lines 

denote the 2000 and 2100 UTC times corresponding to the photos and satellite data), ii) observations 

from a north/northwest (335 azimuth, 64 field of view) viewing rooftop camera, and iii) GOES-11 

satellite-retrieved estimates of GHI (blue regions correspond to thick clouds, orange/red regions 

correspond to clear-sky, and the location of Christman Field denoted by white arrow).  

The high variability of the solar resource, caused principally by ramps of various strength and 

intervals, are tied to the macro- and microphysical properties of the intervening cloud cover.  A 

surface/satellite perspective on broken cumulus clouds, most often associated with complex 

ramping behavior, is shown for an example over the Colorado Front Range in Fig. 1. In this case, an 

approximately 700 W/m2 increase (upward ramp) of solar irradiance corresponds to a break in the 
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optically thick, broken cloud cover formed by sporadic afternoon thunderstorms.  The solar 

radiation subsequently drops by a similar amount as a downward ramp upon the arrival of 

shadows from clouds to the southwest.   

Optimal integration of PV and CSP systems into a power grid requires advanced knowledge of 

both the general likelihood and specific timing of ramps.  Accurate ramp prediction requires in turn 

an accuracy in identifying and predicting the motion of clouds, and specifically the locations and 

magnitude of their shadows. Addressing this need both probabilistically and deterministically in 

the short-term forecast time horizon (e.g., 0-7 hr) provides solar energy suppliers with information 

critical in supporting decisions on load balancing and transmission switching in a spatially 

distributed network, dispatching energy at optimal times, and facilitating the overall penetration of 

solar power on the electric grid. 

There exist several methods for forecasting cloud impacts to solar energy (referred to here as 

radiation falling between the wavelength range of 290 nm to 3m, which accounts for ~97% of the 

total energy; Sengupta et al., 2015), each optimized to a specific spatial and temporal scale (Diagne 

et al., 2013).  Observational techniques at short time windows are better suited to describing the 

current distribution of clouds and cloud properties deterministically, leading to better short-term 

forecasts of ramps predicated on the continuity and simple advection of this field.  At temporal 

scales of 0-0.5 hr, information from persistence (Lee et al., 2017), giving way to surface-based all-

sky camera networks (Kleissl et al., 2010; Chow et al. 2011), provide the most accurate predictive 

capability.  At intra-day forecast timeframes of ~0.5-3 hr, airborne or satellite-based platforms 

provide a useful description of clouds that reside beyond the local horizon view of surface-based 

networks.  The skill associated with forecasting simple (non-evolving) cloud field advection via 

observed or model-supplied motion vectors depends on the cloud type and meteorological regime. 

At multi-hour to day-ahead timeframes, observation-based methods give way in skill to numerical 

weather prediction (NWP) based systems (Inman et al., 2013).  At these longer time horizons, the 

cloud field is best described by atmospheric dynamics and thermodynamics which drive cloud 

formation, dissipation, and cloud microphysical evolution rather than advection of the initially 

observed cloud field.  

Environmental satellites have measured solar energy reflected from the earth/atmosphere 

system for many decades (Vonder Haar et al., 1973), and satellite-based methods for solar energy 

forecasting and resource assessment are now very well established (Miller et al., 2013).  Empirical 

methods (e.g., Tarpley, 1979; Cano et al., 1986; Schmetz, 1989; Perez et al., 2002) relate satellite 

observations of cloud reflectance to atmospheric transmittance.  Specifically, ground-based 

measurements of the minimum and maximum observed GHI are related linearly to a normalized 

cloud index derived from the satellite reflectance data.  Physical methods (e.g., Gautier et al., 1980; 

Diak and Gautier, 1983; Dedieu et al., 1987; Darnell et al., 1988) enlist radiative transfer modeling 

to retrieve the surface radiation field directly from the satellite observations. Typical RMSE for 

satellite-based global hourly radiation assessment is 17-25% (Polo et al, 2008).  The main sources 

of error reside in microscale variability of the radiation field, caused by cloud shadows (Zelenka et 

al., 1999). 
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The focus of this paper is on improving satellite-based solar forecasting techniques of cloud-

induced solar energy ramps over time scales that help to bridge the gap in capabilities between the 

near-casting (persistence and all-sky camera systems) and forecasting (NWP) regimes. As 

mentioned above, determination of the mesoscale cloud distribution and tracking its motion via 

advection techniques is tailored to the 0.5-3 hr forecast window.  Here, we describe results of a 

cloud advection scheme that is applicable to current and future geostationary satellite 

observations.  Referred to hereafter as the Cooperative Institute for Research in the Atmosphere’s 

(CIRA) solar forecasting system, or CIRACast, the prediction scheme leverages cloud properties 

from operational quantitative algorithms, four-dimensional steering winds from NWP model 

(which assimilates rawinsonde and satellite-derived winds), and a radiative transfer code to 

compute surface radiation values of advected cloud systems.  As an advance to the current state of 

the art, and in anticipation of high space/time resolution geostationary systems, we consider cloud 

shadow locations that have been geometrically-adjusted for viewer parallax and the solar geometry 

using satellite estimates of cloud height. 

The paper is structured as follows. Section 2 provides an overview of the satellite-retrieved 

cloud properties, numerical model data, and radiative transfer components of CIRACast.  Section 3 

details the methodology of coupling these components to address the short-term prediction 

problem, including the satellite-specific geometric considerations for proper cloud shadow location 

assignment. Examples of performance, sensitivity, caveats of the method, and its performance 

incorporated within an operational multi-scale solar forecasting system are presented in Section 4. 

Section 5 considers the outstanding and emergent needs for improved solar forecasting tools, and 

outlines how the next generation of geostationary environmental satellites can help to address 

them.  Section 6 summarizes the paper and looks toward future development. Appendix A provides 

details on the calculations used for parallax and shadow casting.  

2. Observational and Model Datasets

CIRACast is a fusion of three main elements: 1) cloud macro- and microphysical properties 

derived from satellite observations, 2) short-term NWP model wind fields, and 3) a radiative 

transfer model relating the space/time evolving field of clouds to the surface downwelling solar 

irradiance.  This downwelling irradiance is composed of the direct normal irradiance (DNI) and 

diffuse horizontal irradiance (DHI), which together form the Global Horizontal Irradiance (GHI): 

(1) 

where sun is the local solar zenith angle.  GHI is the parameter of interest to PV arrays, while DNI is 

the more relevant parameter for CSP sites. Whereas atmospheric aerosol plays an important role 

for DNI, it plays a lesser role in ramp-induced changes to the GHI (apart from extreme cases, e.g., 

near smoke/dust plumes or along frontal boundaries).  As such, the focus of this work is on cloud-

induced ramps.  This section introduces the three main elements of CIRACast, followed in Section 3 

by an explanation of how they are coupled. 
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2.1 Satellite-Based Cloud Property Retrievals 

The Clouds from the Advanced Very High Resolution Radiometer (AVHRR)–Extended (CLAVR-

x; Heidinger et al., 2009; Heidinger et al., 2010; Heidinger 2012; Pavolonis et al., 2005; Walther and 

Heidinger, 2012) is an operational code package (available online at: 

https://cimss.ssec.wisc.edu/cspp/clavrx_v2.0.shtml) developed by the National Oceanic and 

Atmospheric Administration (NOAA).  Originally designed for AVHRR, as its name implies, CLAVR-x 

has since been extended to accommodate a variety of similar-class satellite optical spectrum 

(visible, near-infrared, middle-infrared, and thermal infrared bands) satellite radiometers flying 

upon various platforms, including geostationary observations from the Geostationary Operational 

Environmental Satellite (GOES) series and members of the international geostationary constellation 

(e.g., Meteosat and Himawari).   

CLAVR-x derives pixel-scale information on cloud distribution and physical/optical properties, 

including liquid/ice phase, cloud-top height/pressure, and cloud optical depth and effective particle 

radius.  The daytime cloud mask employs a dark-sky background, based on monthly cloud-cleared 

composite imagery and an updating ancillary snow cover database. For GOES cloud properties 

processing at CIRA, the georeferenced cloud properties from CLAVR-x are computed in near real-

time based on direct broadcast satellite data, and are distributed immediately upon completion for 

use in the cloud advection code via automated processing scripts.  

2.2 Numerical Weather Prediction Model Data 

Whereas CLAVR-x provides an estimate of the instantaneous cloud distribution, useful for solar 

resource assessments (Sengupta et al., 2015), CIRACast predicts how this distribution will evolve in 

the short-term.  It enlists a four-dimensional (space+time) model wind field from a Numerical 

Weather Prediction (NWP) model to propagate cloud locations forward in time at configurable 

spatial and temporal resolution.  To provide operational relevance, CIRACast enlists NOAA’s Global 

Forecast System (GFS) NWP model for this purpose.  The GFS provides initialization times of 00, 06, 

12, and 18 UTC, and 3-hourly forecast time steps going out 24 hours from each initialization time.   

Model winds at all levels from the closest initialization time are interpolated linearly between 

model time steps bracketing the current satellite image (or forecasted satellite field) time. This 

interpolation provides an evolving description of the stream function across space and time, 

including the representation of curvature in the flow not captured by techniques that apply a linear 

wind vector defined at initialization time.  CIRACast uses the interpolated wind field to steer clouds 

based on their CLAVR-x estimated heights.  In addition, information on total column ozone and 

precipitable water are extracted from the GFS fields for use by the standalone radiative transfer 

code, described below.  

2.3 Surface Irradiance Radiative Transfer Calculations 

Once the cloud field has been advanced per the interpolated winds, we must determine the 

surface irradiance at the new cloud shadow locations.  The CLAVR-x package contains an embedded 

version of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) (Pinker and Laszlo, 

1992; Pinker et al., 1995; Pinker et al., 2000) radiative transfer code, used for global radiation 
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budget studies. However, the solar forecasting problem requires calculations of irradiance for 

future states.  In the initial version of CIRACast, a stand-alone version of SASRAB is applied in a 

forecast mode.   

Inputs to SASRAB include cloud properties and visible-band reflectance, precipitable water and 

ozone, the solar/satellite geometry, and surface reflectance properties. These parameters are saved 

to the CIRACast output grid and used for computing the surface irradiance at each time step.  The 

cloud information comes from CLAVR-x. The solar geometry and viewer parallax (described in 

Section 3) are updated via geometric calculations.  Precipitable water and ozone information, used 

in the radiative transfer calculations for GHI, comes from the GFS model.  The cloud-cleared visible 

reflectance background required by SASRAB utilizes the same field used by CLAVR-x for its cloud 

masking.  This background uses CONUS-centered composites of the second-darkest GOES visible 

band reflectance encountered at each pixel, provided for each scan time, in the two-week period. 

For example, a two-hour satellite forecast, initialized at 16Z and valid at 18Z on the 15th of 

February would utilize the 18Z cloud-cleared GOES image compiled over the period 1-14 February.  

The background accounts for the possibility of highly-variable surface properties such as snow 

cover, which if unaccounted for would masquerade as a false cloud, with associated false surface 

irradiance impacts (Perez et al., 2002).  SASRAB is designed to run on a pixel-by-pixel basis 

throughout the output grid. It is also possible to apply the code to 3x3 pixel groups of pixels, as a 

way of imparting smoothness to the radiation field.  
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3. Methodology

Fig. 2.  General flow diagram for CIRACast initialization and short-term forecasts of GHI. 

A simple schematic of the processing flow for CIRACast is shown in Fig. 2.  Beginning with a new 

satellite image collection, we obtain corresponding NWP model data (analysis or short-term 

forecast as required to match the satellite image time).  CLAVR-x is called to compute the cloud 

mask, type, and property information for domains of interest.  Based on the satellite-identified 

cloud field, cloud objects are identified using property similarity (discussed below).  We then 

determine the location of cloud shadows based on parallax correction and shadow-casting, and 

compute an initial-time downwelling solar irradiance at the surface field.   

Using interpolated NWP wind information, the cloud groups are then advanced by height-

dependent steering winds to their new locations.  New shadow locations are computed, and all 

necessary cloud information needed for SASRAB irradiance calculations are stored in an output grid 

which has the same spatial dimension as the original domain.  The parameters stored are: satellite 

zenith angle, solar zenith angle, relative satellite/solar azimuth angle, sun glint angle, visible 

reflectance, cloud mask result, snow fraction, time-interpolated dark-sky background, cloud optical 

depth, cloud top effective radius, cloud type, cloud top pressure, cloud top height, column ozone, 

column precipitable water, latitude, longitude, scan time, and cloud water path. 
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3.1 Assignment of Cloud Objects 

Early versions of CIRACast considered cloud pixels as independent cloud objects and tracked 

them individually over space/time.  This approach can lead to the break-up of contiguous clouds 

over time, particularly in the presence of a strongly divergent wind field and at longer forecast 

times.  This led in turn to spurious ramps due to the “clear” gaps formed by the divergence of 

previously adjacent cloud pixels—an unphysical result.  The pixel-level advection is also 

computationally inefficient—requiring the tracking of potentially thousands of cloudy pixels for 

even a modest domain size (e.g., a box of dimension several hundred km on a side), depending on 

the regional cloud coverage. 

To mitigate these issues, a modification to the logic was introduced wherein cloudy pixels were 

associated as contiguous objects or ‘groups.’  Assignment of groups is based on a weighted score of 

differences in the cloud properties listed in Table 1; similar cloud pixels (determined by 

experimentally-determined thresholds of proximity in cloud parameter space) form individual 

groups while dissimilar pixels form new cloud groups.  The scheme first clusters cloud pixels based 

on their connectivity and then assesses their similarity in retrieved cloud properties via Table 1.  

Table 1: Tests, Thresholds, and Weights for adjacent pixel group assignment 

Test Parameter Threshold Value Weight 
Same cloud type n/a 0.35 
Similar cloud type n/a 0.25 
Change in cloud-top height 3-5 km 0.30 
Change in effective radius 5-10 µm 0.05 
Change in cloud optical depth 5-10 0.05 

The ranges of threshold values in Table 1 apply to different cloud types.  For cloud top height, 

the threshold is 3 km for low/liquid, super-cooled, mixed-phase, cirrus, and overlapping clouds, and 

5 km for opaque ice and overshooting tops (deep convection).  For effective radius, the threshold is 

5 µm for low/liquid and super-cooled clouds, and 10 µm for all other types.  For optical depth, the 

threshold is 10 for mixed-phase and 5 for all other cloud types.  Similar rules associate liquid-phase 

clouds of low/super-cooled/mixed cloud types, and ice-phase clouds of cirrus/opaque 

ice/overshooting/overlap cloud types.  These thresholds were obtained experimentally, but are 

based on the observed variability in cloud properties and morphology (e.g., Miller et al., 2014). 

Looping over the rows (from north to south) and columns (from west to east) of the satellite 

domain, each pixel is compared against any adjacent pixels that have already been evaluated.  For 

the base case of the first cloudy pixel encountered, a default group identifier number is assigned to 

it and the next pixel in the loop is considered.  The number of previously-evaluated pixels used in 

group evaluating the current pixel varies per the cloud spatial distribution and the position of the 

current pixel in the image array.  A weighted score of similarity based on the tests, thresholds and 

weights provided in Table 1, is computed as follows.  Each test produces a value between 0.0 and 

1.0, depending on the similarity of the current pixel and the adjacent pixel.  For example, if the 

cloud top height for the adjacent pixel is identical to the current pixel cloud top height, a value of 1.0 
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is assigned for that adjacent pixel location, but if the adjacent pixel cloud top height deviates from 

the current pixel then the value is reduced linearly.  If the threshold cloud top height is 5 km, for 

example, and the difference between the current pixel and adjacent pixel is 2.5 km, then the value 

for that adjacent pixel location is 0.5.  If the difference reaches 5 km or greater, then the value is 0.0. 

For same and related cloud type tests, the result is assigned in a binary sense (0.0 or 1.0). 

The above procedure is repeated for each similarity test type.  After all tests are complete, a 

final weighted sum is produced using the weights shown in the right column of Table 1.  When this 

procedure has been completed for each previously-evaluated adjacent pixel, the array of weighted 

sum tests is examined.  If any of the weighted sums exceeds a value of 0.5, then the pixel having the 

maximum value is selected as being the group bearing closest similarity to the test pixel, and the 

test pixel is assigned to that same group identification number.  If none of the weighted sums 

exceeds 0.5, then the test pixel is deemed unique enough to have its own, new, group number 

assigned to it.   

At the end of the grouping analysis, each cloud pixel will be associated with only one group. A 

group can be comprised of a single cloud pixel if it is not associated with any other cloudy pixels at 

initial time.  Thus, in the limiting case of total non-similarity among the cloudy pixels, the number of 

groups can match the total number of cloudy pixels in the scene. After the groups have all been 

identified, a dominant cloud type, cloud top pressure, mean cloud top height, and maximum optical 

depth based on the pixel members of each group is determined for tracking purposes.  Whereas 

calculation of surface irradiances is done on a pixel-by-pixel basis, the pixels common to a group 

will advect together over the forecast period.  

An example of this grouping analysis is shown in Fig. 3.  The reduction in structure seen in the 

group analysis reflects the consolidation of many cloudy pixels into contiguous structures, based on 

the logic described above.  The connectivity of some cloud structures may result in rigid-body 

advection of a large cloud field.  Likewise, if a cloud group number changes (as thresholds are 

surpassed) for a contiguous cloud this can lead to artificial cloud breaks (producing spurious 

ramps) along the group interfaces during the advection process.  The tuning of the group logic to 

avoid these unrealistic behaviors and artifacts is an ongoing development of CIRACast. 
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Fig. 3. a) GOES visible reflectance for a convective scene over the southwest U.S.  b) Cloud groups 

identified from this scene, based on the similarity rules described in Section 3.1. 

3.2 Cloud Advection 

The advection level for winds used to move a given cloud group is currently assumed to be the 

cloud top height of the group’s reference pixel.  Once the interpolated wind vector is determined 

from GFS four-dimensional (space + time) interpolation, it is used to compute a linear displacement 

of the group’s reference pixel location (latitude/longitude, parallax corrected).   An updated shadow 

location (based on the new cloud location and the time-adjusted solar geometry) is computed.  To 

avoid the break-up of a cloud group over time in the presence of a divergent wind field, a reference 

pixel (one defined for each group) is used to determine these shifts, and the shifts are applied 

uniformly to all members of the group.  Similarly, a dominant cloud height, based the optical-depth-

weighted cloud top heights of the group, is used to determine the magnitude of the shadow 

placement for all the group members.    

An important consideration for the advection of cloud groups across a fixed grid is that a group 

of pixels, once shifted in space by a wind vector, will no longer align perfectly with the original grid. 

We must therefore have a way of translating the cloud group back to the output grid without losing 

information about the analog location of the cloud group along the way.  The output grid is the same 

spatial dimension as the initial satellite observation data.  The cloud groups are mapped to the 

output grid at each time step in the advection, while maintaining a record of the groups exact 

location.  Any location where the output grid does not contain a cloudy pixel is treated as a clear-

sky pixel for surface irradiance calculations. 

The output of the advection code is a stored array of cloud properties retrieved from CLAVR-x 

whose location latitude and longitude evolve in time.  In this way, cloud groups follow streamlines 

of flow as defined by the model wind field, allowing for representative advection behavior in curved 
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flows as opposed to linear extrapolation.  While new clouds are not formed during the advection, it 

is possible that some groups may intersect, particularly in cases of strong vertical wind shear 

(speed and directional).  A limiting assumption to the method is that clouds do not evolve 

significantly over the forecast period. The cloud property arrays as retrieved from CLAVR-x 

maintain their values; only the locations of the clouds and their shadows are modified. 

3.3 Geometric Considerations 

The principal goal of short-term solar forecasting is to predict the passage of cloud shadows 

across the discrete locations of solar farms.  The spatial scale of these farms vis-à-vis the resolution 

of the satellite observations presents a specific challenge, as even a relatively large (e.g., 100 acre) 

farm occupies only ~40% of a standard 1 km2 satellite pixel. As satellite imaging radiometers 

advance in their spatial and temporal resolution, the ability to hone in on scales of relevance to 

these solar farms increases.  However, resolving actual cloud shadows at these scales requires 

careful account of the satellite and time-evolving solar geometry.  This section presents the 

methodology adopted by CIRACast for this purpose. 

There are two main considerations for addressing the cloud geometry problem: satellite viewer 

parallax and the casting of shadows.  Unless a cloud is viewed from directly overhead, its 

geolocation (i.e., projecting its sub-cloud location onto the ellipsoid) will include parallax 

displacement that is a function of the cloud’s height above the surface and the obliquity of the 

viewer angle—larger values for each quantity will result in larger displacements.  The direction of 

displacement is always away from the observer, such that corrections for parallax shift the 

locations of clouds toward the sub-satellite (nadir) point along a great circle arc that connects the 

satellite-sub-point to the apparent location of the cloud.  Likewise, the shadow cast by this cloud 

will not reside at the sub-cloud point on the surface unless the sun is directly overhead.  The 

shadow cast by the cloud is in the direction away from the sun in a way that is tied to the cloud 

height and the solar geometry.  

First, the height of the cloud must be computed to determine the correct solar geometry for the 

casting of shadows by cloud features.  Secondly, using the derived cloud-top information, the 

correct location of cloudy pixels over the surface must be calculated to correct for parallax effects 

from the viewing perspective of the satellite.  Finally, detailed information about terrain elevation is 

required to compute the location on the surface where shadows are intercepted by terrain.  

Corrections for satellite viewing parallax were based on a method described in Vicente et al. (2002) 

application to an ellipsoidal Earth.  Owing to typographical errors in some of the key equations of 

Vicente et al. (2002), and the significance of this work to the current application, we have updated 

the salient elements of that derivation.  These details are included in Appendix 1 of this paper.  

Once the sub-cloud location has been determined from the parallax correction, using the 

CLAVR-x retrieved cloud top height and satellite viewing geometry, a subsequent calculation based 

on the new location, cloud top height, and solar geometry is made to ‘cast’ the cloud shadow down 

to the surface along the direction of the solar direct beam.  The procedure follows identically to that 

of the parallax correction described in Appendix A, but operates from the perspective of the sun and 

is applied in the reverse direction as explained here.  We begin by using the parallax-corrected 
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cloud location as original location (X,Y,Z)cld,app in Eqs. A.3-A.5, and substitute the sun’s position (i.e., 

the time-dependent sub-solar latitude and longitude, calculated from solar geometry software) for 

(X,Y,Z)sat for the satellite position in Eqs. A.6-A.8.  We then utilize the satellite-retrieved cloud height 

(Hcld) as before to determine a ‘parallax corrected location’ (Eqs. A.18-A.22) which assumes that the 

sun is the “viewer” in this case.  A range and azimuth from the original location to this corrected 

location is computed using spherical geometry software.  To cast the shadow, the azimuth is rotated 

180° (the opposite direction of the computed parallax correction) and a distance defined by the 

computed range is traversed from the original parallax-corrected cloud location to arrive at the 

(shad, shad) location of the shadow.

As a minor modification to account for shadows cast upon elevated terrain, Hcld is adjusted in 

the above equations by subtracting from it the surface elevation defined at the parallax-corrected 

cloud location (from the USGS Global 30 Arc-second Elevation model, GTOPO30; 

https://lta.cr.usgs.gov/GTOPO30).  In this way, a shorter range of shadow adjustment would be 

computed for a cloud of given height located over high-elevation terrain vs. a location at mean sea 

level.  The implicit assumption is that the surface elevation at the derived shadow location is equal 

to that at the sub-cloud location.  This assumption breaks down in highly variable terrain (e.g., a 

shadow cast onto a mountain side or into a valley), and would require iterative corrections to 

account for the elevation differences between the sub-cloud and shadow locations. For the current 

application of CIRACast to solar farms located in non-complex terrain regions, these higher-order 

adjustments to shadow placement are ignored. 

The downwelling solar irradiance values for each of the cloudy pixels comprising the cloud 

group are assigned to the shadow-cast locations. These parallax correction and shadow-casting 

calculations are computed at each time step in the time series output from the CIRACast advection 

algorithm per the flow diagram shown in Fig. 2. 

4. CIRACast Examples

4.1 Colorado Ramp Forecast 

Fig. 4 shows GOES-West visible-band imagery over the Colorado region on 6 March 2013 from 

2000 to 2300 UTC (or 2:00 PM to 5:00 PM, Mountain Standard Time).  The imagery depicts a 

north/south oriented upper-level cloud band drifting across the central to eastern part of the state. 

Toward the end of the time series, and the solar zenith angle increases in the late afternoon, 

shadows cast by these high clouds can be seen extending to the east across the High Plains of 

Colorado, far removed from the sub-cloud surface locations.   
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Fig. 4.  GOES-W visible reflectance captures a north/south-oriented band of high clouds crossing over 

the Colorado region on 6 March 2013 at selected times of a) 2000 UTC, b) 2100 UTC, c) 2200 UTC, and 

d) 2300 UTC.  A purple cross denotes the location of the Table Mountain SURFRAD site in Boulder, CO.

The corresponding CIRACast predictions of downwelling GHI at the surface are shown in Fig. 5.  

The forecast captures both the general trend toward lower values of background GHI in the later 

afternoon and the distribution of enhanced GHI suppression due to cloud shadows.  Eastward 

propagation of these clouds over the afternoon hours produced a series of ramps at the Table 

Mountain SURFRAD site located in Boulder, Colorado, denoted by a white cross.  By inspection of 

Fig. 5, the cloud layer was predicted to impact this site toward the latter half of the 2100 UTC hour. 
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Fig. 5. CIRACast forecasted downwelling GHI (W/m2) at the surface corresponding to Fig. 4. In each 

panel, a white cross denotes the location of the Table Mountain SURFRAD site in Boulder, CO. 

The CIRACast predictions are shown along with the Table Mountain SURFRAD observations in 

Fig. 6. For this case study, CIRACast was initialized at 2000 UTC and run for several hours at 5-min 

forecast steps.  In general, CIRACast captures the onset of afternoon ramp activity reasonably well, 

although differences exist in the specific timing and magnitude of the ramps.  The onset of the 

primary ramping event at approximately 2200 UTC was predicted correctly.  However, ramp misses 

and false alarms were also present, owing to changes in cloud structure (e.g., formation and 

dissipation) that is unaccounted for by CIRACast.  Specifically, an observed ramp at approximately 

2130 UTC was missed entirely, and two ‘false ramps’ were predicted during the 2300 UTC hour.  
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Fig. 6.  CIRACast multi-hour solar forecast (initialized at 2000 UTC, 5-min resolution) of GHI at Table 

Mountain SURFRAD station for the PM cloud case shown in Fig. 3. 

4.2 Caveats of Evolving and Stationary Cloud Fields 

Since simple cloud advection techniques like CIRACast do not consider clouds prognostically 

like a cloud-resolving NWP model can, there is no account for cloud generation (e.g., due to lifting 

along a frontal boundary, surface heating), cloud dissipation (e.g., due to dry air entrainment, 

subsidence, mixing-out of boundary layer fog, etc.), or vertical changes to an existing cloud field 

which impact shadow properties.  These understood limitations contribute to a large portion of the 

observed error in GHI ramp forecasting.  These errors in general will increase with forecast time, as 

cloud evolution processes begin to dominate the state of the future cloud field.  The timescales for 

decorrelation between the current cloud field (advected by winds) and future cloud distribution are 

tied closely to the meteorological conditions, local surface properties (including topography), time 

of day, and season. While this cannot be generalized, location-specific performance statistics can be 

developed based on local constraints to surface properties and the prevailing weather 

(climatology) of a given region. 

A key issue that was revealed during statistical and case-study validations of CIRACast is ramps 

produced by the false advection of stationary cloud features.  For example, orographic clouds in 

mountainous regions (e.g., the Colorado Front Range) form and dissipate with the ascent and 
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descent of air parcels forced over the terrain.  Likewise, the distribution and evolution of low-level 

marine stratocumulus (e.g., along coastal California) is governed by terrain blocking, pooling of cool 

air at night in drainage basins, and inland burn-off during the day. These processes are not 

accounted for in the advection model.  As such, such clouds may be propagated downstream by the 

prevailing model winds, leading to significant over-forecasting of cloud ramps.   

An example of false advection for a marine stratocumulus layer along the California coastline is 

shown as Fig. 7.  Here, marine boundary layer clouds hug the coastline over the course of several 

hours, while the advection-based GHI forecast (which does not account for terrain blocking and 

cloud burn-off) proceeds to move the entire cloud field inland per the NWP southerly flow. The 

advection leads to false GHI ramping predictions at coastal stations.  

Fig. 7.  Example of false inland advection for a marine stratocumulus field off the southern California 

coast.  Upper panels show GHI at a) initial observation time of 1800 UTC, and b) three hours later, 

having been advected onshore by a southerly model wind field.  Lower panels (c) and (d) show GOES-

West visible imagery 1800 and 2100 UTC, respectively, confirming that the cloud deck remained 

offshore over this period. 
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One way to minimize the errors arising from the scenario shown in Fig. 7 is to account for 

terrain height vis-à-vis cloud height, and invoke low-level blocking.  CIRACast is currently being 

retooled in this way—preventing cloud groups from advection when they abut terrain that exceeds 

the groups cloud top height.  Such logic will fail in the case of orographic clouds, however. 

Atmospheric motion vectors (AMV) derived from satellite observations (Rabin et al., 2004; Velden 

and Bedka, 2009) are insufficient for this purpose, as they do not provide a dense vector grid (e.g., 

at the pixel level of the satellite’s spatial resolution) and are not analyzed for stationary targets such 

as orographic cloud edges. Dense motion vectors derived from optical flow techniques (e.g., 

Farnebäck, 2003), coupled with a satellite-derived cloud mask, may be more effective in identifying 

and handling stationary clouds.  This is another area of ongoing development for CIRACast. 

4.3 Preliminary Analysis of Statistical Performance 

Figure 8.  Scatter plots of observed vs. CIRACast-forecasted GHI for four SURFAD sites: Desert Rock, NV, 

Table Mountain, CO, Sioux Falls, SD, and Penn State, PA.  Data compiled over periods between January 

2014 and December 2016.   

Fig. 8 compares observed and forecasted GHI for selected SURFRAD sites distributed across the 

U.S.  Data shown are for 0-1 hour forecasts compiled for each of the sites over periods between 

January 2014 and December 2016.  The specific procedures used to quantify forecast uncertainty in 
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solar forecasting systems remains a topic of considerable debate.  While efforts to engage utility 

stakeholders to identify best-practice metrics continue, there remain no universally agreed-upon 

standards for forecast metrics (Orwig et al. 2015.)  Regarding normalized mean absolute error 

(nMAE, sometimes referred to as ‘Mean Absolute Percentage Error’, or MAPE), different approaches 

to the normalization of the error metric have been published.  When considering errors measured 

across the time-varying solar input, many techniques elect to normalize the errors using the clear-

sky solar irradiance computed at the validation time (Marquez and Coimbra 2013b, Sangrody et al. 

2017) as opposed to using a mean insolation (all-sky) computed over the entire period. These 

studies suggest that normalizing by the time-varying clear-sky component captures the stochastic 

variability of solar irradiance.  As such, MAE values reported in the current work were normalized 

by clear-sky GHI values (MAEclr) valid at each measurement time.    

Table 2: Forecast Mean-Absolute and Root-Mean Squared Errors for selected SURFRAD stations as a 

function of forecast window 

SURFRAD Site MAE (W/m2) 
 1hr   3hr 

MAEclr (%) 
1hr    3hr 

RMSE (W/m2) 
1hr           3hr 

RMSE (%) 
1hr        3hr 

Desert Rock, NV 61.9 74.5 8.5 9.6 119.2 141.2 17.8 17.9 
Table Mtn, CO 130.1 162.4 17.2 20.6 194.7 237.9 24.9 28.8 
Penn State, PA 125.3 185.5 14.7 24.8 194.2 267.7 21.9 34.2 
Sioux Falls, SD 109.9 146.3 15.1 20.2 168.5 219.4 11.7 29.1 

Overall values of (MAE, MAEclr and RMSE) for 1- and 3-hr forecasts for the SURFRAD sites are 

presented as Table 2.  Forecast error, represented by RMSE, exhibit larger overall errors; this is 

anticipated due to the nature of ramp forecasting errors, where individual large errors contribute 

more to the overall error computation than with MAE.  Forecast errors for the 1-hr timeframe are 

lower than those for the 3-hr timeframe for both MAE and RMSE by ~20-40%, demonstrating the 

fall-off in skill of advection-only based forecasts, which neglect cloud evolution and 

formation/dissipation during the forecast period.   

As a comparison to these results, MAE values for 1-hr forecasts for the Desert Rock site were 

also computed by Perez et al. (2016; hereafter, referred to as “P16”) using a calculation of MAE that 

is indexed to the observed (i.e., not clear-sky) GHI. For hour-ahead forecasts on a 0.1x0.1-degree 

grid (~11 km), NWP forecasts demonstrated MAE values of 20.8% (the NOAA High-Resolution 

Rapid Refresh (HRRR) model), 11.0% (European Centre for Medium-Range Weather Forecasts 

(ECMWF) model), and 10.6% (GFS), while the P16 SolarAnywhere Version 4 commercial product 

demonstrated errors of 8.4% at the ~11 km grid resolution.  It is important to note that due to 

differences in the spatial resolution (~4 km CIRACast vs. 11 km in P16) and GHI normalization of 

MAE (clear-sky in CIRACast vs. observed in P16), the comparison between the two methods is not 

direct.  Higher spatial resolution will drive up the CIRACast MAE compared to P16. while clear-sky 

normalization will lower CIRACast MAE compared to P16.   

Furthermore, small errors in advection, shadow casting, and optical properties can translate to 

significant uncertainties at the pixel level, making improvements to smart persistence forecasts 

very difficult. Despite the understood limitations of the current CIRACast method, the MAE 
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performance was found to be on par with other techniques. For example, for one of the more 

challenging SURFRAD validation sites (Penn State), the smart persistence MAE was computed as 

142.1 W/m2 (16.0%).  Following the form of skill score (SS) from Antonanzas et al. (2016): 

   %, (2) 

yields an SS of 11.8% in this case. Meanwhile, the Desert Rock site produced smart persistence MAE 

of 58.1 W/m2 (7.5%), or an SS of -6.5%.  Both values fall in a family ranging from -40 to +40 % 

based on an ensemble of techniques reported in the literature (Antonanzas et al., 2016).  Ostensibly 

the negative value at Desert Rock would appear to be worse performance, but this is where 

consideration of what constitutes a meaningful metric comes into play.  ‘Persistence’ implies no 

ramp events whatsoever—the GHI scales with the initial atmospheric transmittance and varies 

with daytime parabolic pattern of downwelling solar irradiance.  So, from a total (time integrated) 

energy standpoint, persistence may win-out in the MAE statistics.  However, it will not capture the 

timing and variability of cloud-induced ramps which are key to solar energy resource management 

(e.g., load balancing) and energy dispatch in the short-term time horizon. 

The magnitude and spread of MAE among the various comparisons speaks to the significant 

challenges faced by advection techniques in different meteorological regimes.  For example, the 

MAE for Table Mountain was roughly two times larger than Desert Rock.  This is almost certainly 

due to the increased amount and complexity of cloud cover encountered over the Rocky Mountains 

compared to the desert site.  As mentioned previously, the presence of orographic clouds over the 

Colorado Front Range presents an inherent challenge for techniques that are predicated on cloud 

advection.  

4.4 Sensitivity to Geometry 

As described in Section 3.3, CIRACast accounts for parallax effect in the satellite view and cloud 

shadow locations utilizing solar geometry and retrieved cloud top heights. The importance of the 

parallax correction and proper casting of a cloud’s shadow are illustrated in Fig. 9, which shows the 

horizontal displacement, neglecting topography, caused by both effects as a function of cloud top 

height and either satellite zenith angle (for parallax) or solar zenith angle (for shadows).  The 

displacement increases with cloud top height, so these corrections are especially significant for 

cirrus and cumulonimbus clouds.  The parallax correction is most significant for higher satellite 

zenith angles (i.e. when clouds are located closer to the limb of the measurement), while the 

shadow correction is most significant when the solar zenith angle is high. 
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Fig. 9. Horizontal displacement as a function of cloud top height, neglecting topography, between a 

cloud’s nadir location and either (1) its apparent location due to viewer parallax as a function of 

satellite zenith angle; or (2) the farthest extent of the shadow cast by the cloud as a function of solar 

zenith angle. 

Using case studies, we have analyzed the sensitivity forecast outcomes regarding parallax 

correction, shadow prediction, and wind interpolation as a function of retrieved cloud height.  Fig. 

10 demonstrates the impact of the each of these factors relative to a “control” case where all three 

factors are accounted for.  The top panel shows trajectories for two cloud groups over Colorado 

over the course of three hours.  The left (western) group has a cloud top of 11.6 km and is moving 

northeast, while the right (eastern) group has a cloud top of 6.1 km and is moving southeast.  Owing 

to the height-dependence of parallax shift and shadow casting (Fig. 9), the higher cloud would be 

expected to produce greater errors, growing with time.  This expectation is born out for this example, as 

seen in the lower panels of Fig. 10. In both cases, removing the shadow correction from the control 

(blue line) resulted in a maximum error of about 10.5 km for the higher cloud group. The 

magnitudes of these errors are significant, since displacements of even a few km can alter whether 

a passing cloud impacts a solar array. 
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Fig. 10. (Upper Panel): Cloud trajectories computed for two cloud groups on 1 August 2013. Dots 

indicate tracking feature locations in 45-minute time increments; arrows indicate the general 

direction of cloud group motion. The colors given in the legend indicate the corrections applied for 

each case (parallax, shadow location, and updating with interpolated wind vectors).  (Lower Panels): 

position errors relative to the black “control” case for the two sets of trajectories.  Cloud top height of 

the western group is 11.6 km, and of the eastern group is 6.1 km. 

Removing the parallax correction from the control (yellow line) is more significant, with errors 

exceeding 20 km for the higher topped cloud group.  In this case, however, the single most 

important feature is the update to the cloud motion vectors via interpolation of the model wind 

field.  When these updates are removed from the control (red line), the left cloud group drifts 

approximately 50 km too far to the west over three hours.  This growth of error in curved flow 

environments highlights a benefit of the CIRACast NWP-model coupling that cannot be replicated 

with a feature-tracked vector approach to cloud advection, which moves clouds using wind vectors 

defined at initial time. The effect is somewhat muted in the right group: errors grow rapidly after 45 

minutes as the non-wind corrected cloud group quickly accelerates to the southeast.  In the control 

group, however, the rate of advection has been slowed by the regular updates of the interpolated 

model wind field, which has slowed relative to the initial wind field.  After 135 minutes, wind-

related errors in the right group decrease, though this is mostly circumstantial: the cloud group 

takes a sharp turn to the east, placing it near the final location of the control group, which arrived 

by a much different path.  A more rigorous statistical analysis would likely show a growth in error 

as a function of time and cloud height. 
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4.5 Application within Sun4Cast 

Surface forecasts of GHI for several SURFRAD locations, using observations from both GOES-

East and West, were produced operationally for approximately two years in support of operational 

demonstrations as part of a Department of Energy SunShot program, led by the National Center for 

Atmospheric Research (Haupt et al., 2017).  As a component of the NCAR Sun4Cast model, CIRACast 

was configured to provide 0-3 hr forecasts of GHI at 5-minute time steps over selected locations 

throughout the U.S. During these Sun4Cast demonstrations, CIRACast performed at a MAE of ~49 

W/m2 for non-complex cloud regimes, and an upper-bound MAE of ~116 W/m2 MAE for complex 

cloud situations.  Compared to ‘smart persistence’ forecasts, where the GHI is predicted using a 

constant transmittance value derived from current conditions and applied to the clear-sky forecast, 

the current scheme offered an overall improvement of approximately 6-14 W/m2 for the range of 

cases considered.     

Lee et al. (2017) consider CIRACast in a multi-element (statistical, advection, and NWP) 

evaluation of Sun4Cast forecast skill using a distribution of surface pyranometers operated by the 

Sacramento Municipal Utility District (SMUD).  For this evaluation, they consider four cases (clear, 

morning time marine stratocumulus, fair weather cumulus, and overcast conditions) to exercise the 

models under a diverse array of conditions.  Their findings point toward areas of improvement for 

CIRACast which are now being implemented.  Results indicate a positive bias in clear sky conditions 

of ~10% which is related to limitations of the SASRAB irradiance model.  These biases will be 

corrected with the substitution of a modified radiative transfer model (Xie et al., 2016), but are of 

secondary importance to the main CIRACast emphasis on the distribution and timing of ramps.  An 

anticipated issue with the motion of stationary (fog) clouds was confirmed (e.g., Fig. 7), and this will 

be addressed via a hybrid of feature-tracking derived advection vectors and model wind fusion.  In 

cases of widespread broken and overcast conditions, CIRACast captured the observed variability 

but with a positive bias. 

5. On Emergent Needs and the Potential of Next-Generation Satellite Observations

High-resolution solar data are of critical importance for increasing the penetration of solar 

technologies on the power grid. With solar energy becoming a mainstream source of electricity on 

the grid, there is a growing need for datasets of high resolution and accuracy for all stages of solar 

projects.  These needs relate to policy decisions and technology selection, feasibility and investor 

commitment, engineering design and system integration and testing for performance, and 

operations and maintenance. Various studies (Lew et al., 2013; Hummon et al., 2013) have shown 

how high resolution solar datasets from surface-based measurements and satellites are critical for 

studies of national importance. Underscoring the importance of high resolution solar datasets, 

NREL attempts to model 1-minute solar radiation from the hourly solar radiation datasets available 

from satellites (Hummon et al., 2012). 

 In addition, the spatial resolution of satellite datasets is critical for estimating solar variability 

at power plants (Kankiewicz et al., 2010, 2011). Achieving high-penetration of solar energy using 

large utility scale PV plants requires better understanding of variations that can occur in power 

production on the order of minutes. High resolution solar radiation datasets from satellite based 
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methods form the basis for creating the National Solar Radiation Data Base (NSRDB; George et al., 

2008; http://maps.nrel.gov/prospector).  This dataset, created and distributed by NREL, is 

arguably the most used solar radiation dataset in the world for renewable energy purposes.  It is 

therefore important that this database be continuously updated with the highest temporal and 

spatial resolution satellite datasets available to users. 

In the early evening of 19 November 2016, NOAA launched the first of its next-generation 

GOES-R series (comprising four satellites GOES-R/S/T, and U) from Cape Canaveral, Florida. 

Renamed to GOES-16 two weeks later after its insertion to a temporary geostationary position at 

89.5 W, GOES-16 began collecting first-light imagery in January 2017.  GOES-16 is slated to take 

over GOES-East operations (75.2 W) in late 2017. The next member in the series, GOES-S, is 

scheduled for launch in 2018, and will eventually take over GOES-West operations (137 W) as 

GOES-17.  The GOES-16/17 tandem will complete the transition to an era of advanced imaging 

radiometer capabilities that stands to revolutionize solar energy source assessment and short to 

mid-range solar forecasting.  

Figure 11.  Example of GOES-16 ABI true color imagery over California collected on 18 July 2017 at 

2243 UTC (2:43 PM local time).  The scale of this image is approximately 1000x1000 km.  Reflection of 

sunlight off the PV panels of the Topaz Solar Farm (inset) accounts for the bright white patch noted in 

the imagery.  (For a ~4-hr animation, see: https://youtu.be/gwXA6XeJvKQ) 
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The GOES-R class satellites (Schmidt et al., 2017) feature six primary sensors, two designed for 

earth-viewing and four dedicated to solar and space weather monitoring.  The main earth-viewing 

instrument of interest for solar energy applications is the Advanced Baseline Imager (ABI), an 

imaging radiometer providing 16 narrowband channels between 0.47 and 13.3 m in the optical 

spectrum.  Among these bands is a 0.5 km resolution (at nadir) visible band, five additional visible 

and near-infrared bands at 1 and 2 km resolution, and twelve infrared bands at 2 km resolution.  

These nominal spatial resolutions degrade with increasing distance from satellite nadir, but the 

dual GOES-E/W system will maintain these resolutions to within a factor of 2 for the for the CONUS, 

and will still provide useful information into central Canada and southern Alaska (from GOES-W).  

In terms of temporal resolution, the default collection schedule (Mode 3, or ‘flex mode’) provides 

15-minute “full disk” (the full field of regard for the satellite), 5-minute Continental United States

(CONUS), and two 1-minute mesoscale boxes.  The mesoscale boxes can be superimposed and

interleaved to provide a 30-second update capability.  Compared to the heritage GOES capabilities,

the GOES-R series ABI provides 3 times higher spectral resolution, 4 times higher spatial resolution,

and 5 times higher temporal resolution, or roughly ~60 times higher total data volume.

An example of the rich spectral and spatial information content present in ABI imagery is 

shown in Fig. 11 for a region centered on central and southern California, collected on 18 July 2017 

at 2232 UTC (or, 2:32 Pacific Daylight Time). The imagery, which is a true color rendering with 

atmospheric correction based on Miller et al. (2016), captures a complex array of cloud and aerosol 

features relevant to solar energy, including marine stratocumulus offshore near the Channel 

Islands, fair weather cumulus clouds in across the inland portions of southern California, and a 

large plume of smoke from the Detwiler Fire which burned over 80,000 acres of forested land in 

Mariposa County, CA.  The discrete ‘bright spot’ noted in this image is sunlight reflecting off PV 

panels at the 550 MW Topaz Solar Farm, in San Luis Obispo County.  Being one of largest solar 

farms in the world at 25 km2, the Topaz PV array is readily detectable (in this case, for a period of 

about 1 hr between 2200 and 2300 UTC) by the ABI when the geometry between the sun and GOES-

16 aligns along the specular (mirror) reflection angle.  Although solar panels are designed to absorb 

as much sunlight as possible, and reflectance/glare of their solar glass protective coatings are 

markedly lower (e.g., 5-10%) than standard glass surfaces (e.g., 20-50%, depending on solar 

incidence angle), the amount of reflected light is more than sufficient for detection.  Such an artifact, 

although transient with time of day and season, could produce spurious ramps in satellite 

algorithms which equate reflectance with the presence of clouds. 

A second example illustrating the potential of ABI high-resolution cloud imagery is shown in 

Fig. 12 for a portion of southern Texas.  As in Fig. 11, the imagery was collected 18 July 2017, but for 

a slightly later time (2357 UTC).  As this region is in the U.S. Central time zone, the local time of the 

image is 5:57 PM, nearing the time of sunset.  Fair weather cumulus clouds orient along the low-

level wind flow, forming linear patterns known as cloud streets. Significant biomass smoke 

(transported from fires in the northwest U.S. and Canada) fills the skies over Dallas, Houston, and 

regions to the northeast.  Meanwhile, in the southwest portion of the scene, a cluster of 

thunderstorms and associated anvil cirrus cast long shadows (> 60 km) toward the east.  Close 

inspection of the boundary layer cumulus shows similar shadow patterns, with lesser 

displacements of a few km owing to their smaller vertical extent. 
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What cannot be captured in any single figure is the inherent advantage of high temporal 

resolution for the detection and tracking of clouds and aerosol.  As mentioned above, ABI provides 

5 minute updates over the entire CONUS domain (and higher resolution still, down to 30 s) for 

limited mesoscale domains.  Whereas the mesoscale domains are often moved daily per current 

needs, the CONUS domain is always available as a baseline for solar energy applications. Examples 

of the 5 min refresh rate for 18 July imagery used in Figs. 11-12, covering the period 2202-2357 

UTC, are provided online (see figure captions for YouTube links).   A full CONUS domain loop is also 

available online (https://youtu.be/kUYo5nJd9Hc), which illustrates the synoptic-scale transport of 

smoke from the Pacific Northwest to southern Texas, as noted in Fig. 12.  These examples were 

collected from the GOES check-out point of ~89.5 W; GOES-16 will shift eastward by roughly 15to 

the operational GOES-E position, yielding western CONUS coverage to GOES-W.  GOES-S is 

scheduled for launch in the early half of 2018.  Pending successful commissioning as GOES-17 and 

after conducting its calibration/validation at the GOES check-out point, it will be migrated to the 

operational GOES-W position and immediately assume operations—completing NOAA’s transition 

to its next-generation GOES program. 

Figure 12.  Example of GOES-16 ABI true color imagery over southern Texas collected on 18 July 2017 

at 2357 UTC (5:57 PM local time).  The scale of this image is approximately 720 x 1020 km.  (For a ~4-

hr animation, see: https://youtu.be/MUuU0ti9Ctg)  
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The NOAA CLAVR-x cloud processing software has already been adapted and successfully 

tested on the pre-operational GOES-16 ABI data stream.  The benefits of ABI’s improved resolution 

to the solar forecasting and resource assessment problems are multifold.  Its higher spectral 

resolution provides more accurate retrievals of cloud macro- and microphysical properties used by 

CIRACast for cloud shadow location and surface irradiance estimation. Its higher spatial resolution 

reduces the effects of sub-pixel heterogeneity which can result in underestimation of cloud height 

(contributing to shadow misplacement) and various effects on cloud optical properties depending 

on the underlying background, providing more accurate assessments of solar energy at scales 

approaching those of the PV farms.  The higher temporal resolution allows for more frequent 

updates, improved cloud motion from feature tracking, and potentially the ability to augment 

certain limitations of CIRACast via introduction to temporal trends in cloud properties (changes in 

height and opacity), particularly for short term (< 1 hr) forecasting applications.  These 

observations can be used to complement and extend the three-dimensional cloud information 

provided by all-sky camera networks, currently used widely by solar energy industry. 

6. Conclusion and Future Work

A satellite-based, model fusion technique designed for short term solar irradiance ramp 

forecasting has been described.  The algorithm couples operational geostationary satellite 

retrievals of cloud microphysical and macrophysical properties to a numerical model, utilizing 

cloud height information, space/time-varying winds, and solar geometry to advect clouds and 

locate their shadows on variable terrain.  The data are coupled to a solar irradiance model to 

compute the magnitude of solar irradiance suppression at these shadow locations (or otherwise, 

the clear sky irradiance).  The SURFRAD-validated MAE performance of CIRACast for 0-1 hr 

forecasts, which fell between 8 and 17% depending on location. 

A significant limitation for CIRACast, and any cloud advection scheme in general, is the 

assumption of cloud macro- and microphysical invariance.  Throughout the forecast period, clouds 

are not permitted to grow or dissipate, and no new clouds are formed.  The magnitude of errors in 

the predicted surface radiation field, due to the increasingly unrealistic cloud field over time, is a 

function of the cloud type and the meteorological regime.  The assumption of cloud invariance sets 

an upper-bound on the skill of advection-based forecasts.  Such techniques naturally give give way 

to NWP models, capable of modifying the cloud field in accordance with the dynamic and 

thermodynamic processes governing cloud formation, in the intraday timeframe (Diagne et al., 

2013).  That said, there are some ways to mitigate the limitations of advection schemes and 

improve their skill beyond the ~1-hr time horizon.  These include i) improvements to the cloud 

grouping logic described in Section 3.1, , ii) analysis of cloud group trends which may provide for 

short-term evolution prediction, and iii) taking advantage of the higher resolution ABI information 

as described in Section 5.  In that case, the asymptotic behaviors of cloud evolution would need to 

be constrained as a function of cloud type-dependent statistics and the properties of the 

atmosphere (e.g., stability, moisture profile, tropopause height).  Introducing such approximations 

to cloud evolution (in the form of empirical, semi-empirical, or physical parameterizations) begins 

to blur the boundaries between cloud advection and full-physics NWP models.   
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The SASRAB radiative transfer model currently used by CIRACast, has exhibited clear sky bias 

issues (Xie et al., 2016).  Adoption of a more sophisticated radiative transfer code will improve the 

overall GHI forecast accuracy, especially for statistics which are biased toward the performance 

under clear sky conditions.  In collaboration with NREL, we are adopting the Fast All-sky Radiation 

Model for Solar Applications (FARMS; Xie et al., 2016) model from NREL, and coupling to it the 

CLAVR-x retrieved cloud properties. In addition, CLAVR-x provides an estimate of diffuse 

transmittance (valid over the visible band pass of the ABI).  Combining this information with other 

data that can relate this bandpass transmittance to the broadband shortwave transmittance may 

provide another fast method for GHI that must be evaluated. 

The understood limitations of CIRACast help to outline a scope of work for its future 

development and improvement.  Here, we will concentrate on the exploitation of new ABI 

observations as discussed in Section 5.  Despite these pending improvements, the current state of 

CIRACast performance gives cause for optimism that the ceiling of skill has not yet been reached. 

Adoption of higher resolution NWP models, such as HRRR, would potentially improve the cloud 

advection in the presence of complex flows. Methods for evaluating forecast performance, including 

point vs. spatial averaging, instantaneous GHI behavior vs. assessment of variability over defined 

time windows, and the effects of individual ramps vs. integrated energy must also be revisited in 

the context of higher space/time satellite observations. In addition, the wealth of satellite-supplied 

parameters permit detailed examination of forecast error as a function of cloud type and cloud 

macro/microphysical properties.  These represent exciting pathways for advancing our capabilities 

in this important application of environmental satellites to the outstanding challenges of harnessing 

the solar energy resource. 
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8. Appendix A:  Satellite Viewing Parallax Correction

This Appendix provides updates to a method described in Vicente et al. (2002) for satellite

viewing parallax corrections with application to an ellipsoidal Earth.  The inputs to the parallax 

correction calculation are the apparent latitude/longitude (cld, cld)app and height (Hcld; provided by 

satellite retrievals) of the cloud, the location of the sub-satellite point (sat, sat) and the altitude of 

the satellite (Zsat).  The outputs are the parallax-corrected location (cld, cld)pc. For a Cartesian 

coordinate system (X,Y,Z) whose origin is at Earth’s center, X-axis intersecting the equator and 

prime meridian, Y-axis intersecting the north and south poles, Z-axis intersecting the equator at 90 

E, the ellipsoidal Earth is approximated as: 

(A.1) 



29 

Where RE,equat (= 6378.1 km) and RE,pol (= 6356.6 km) are the equatorial and polar radii of the 

elliptical Earth.  The equivalent radius of Earth at the cloud location is given by: 

(A.2) 

The apparent cloud location (X,Y,Z)cld,app and the satellite location (X,Y,Z)sat are given by: 

(A.3) 

(A.4) 

 , (A.5) 

and, 

(A.6) 

(A.7) 

 , (A.8) 

where Rsat = RE,equat + Hsat (for the geostationary orbit, the satellite altitude Hsat = 35786 km).  

Recognizing that a line connecting the cloud’s apparent position and the satellite position in space 

will intersect the line connecting the center of Earth to the actual (parallax-corrected) cloud 

position at the height of the cloud (Hcld), and following Eq. A.1, the parallax-corrected location of the 

cloud (X,Y,Z)cld,pc satisfies: 

(A.9) 

The apparent and parallax-corrected cloud positions in three-dimensional space are related as: 

(A.10) 

(A.11) 

(A.12) 

Inserting Eqs. A.10-A.12 into Eq. A.9, expanding, and solving for A via the quadratic equation: 

 ,         (A.13) 
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we identify the following quadratic coefficients: 

(A.14) 

(A.15) 

, (A.16) 

where 

. (A.17) 

Converting back to a latitude/longitude coordinate system, the parallax-corrected latitude is given 

by:      

(A.18) 

and the parallax-corrected longitude is given by: 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

Cloud-top heights used in these calculations were supplied by CLAVR-x, via the algorithm 

described by Heidinger and Pavolonis (2009).  Computed as diagnostic terms are the great-circle 

distance of the parallax shift (in km), and the azimuth angle of the shift direction (which should 

always be toward the sub-satellite point). 
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